刺胞动物馆:一种新型的承重建筑表皮

Cnidaria Pavilion: A Novel Approach to Load-Bearing Architectural Skins

由蒙特利尔大学建筑学院开发的刺胞动物馆为大跨度、双曲面建筑表面提供了一种创新的结构和装配系统。这个研究馆设计为建筑和艺术装置,结合了尖端的计算设计、数字制造和手动组装技术,创造了一个轻巧但结构坚固的形式。

The Cnidaria Pavilion, developed at the Université de Montréal’s School of Architecture, presents an innovative structural and assembly system for large-span, doubly curved architectural surfaces. Designed as both an architectural and artistic installation, this research pavilion combines cutting-edge computational design, digital fabrication, and manual assembly techniques to create a lightweight yet structurally robust form.

设计灵感和找形过程

DESIGN INSPIRATION & FORM-FINDING PROCESS

受海葵结构优雅和聚焦声音外壳声学特性的启发,这个 25 m² 的铝制亭子是在 Grasshopper 中使用 Kangaroo 物理模拟通过迭代找形过程开发的。肥皂泡仿真优化了边界样条之间的表面积,确保了可以均匀分布载荷的高效结构形式。最终设计具有三个接入点和一个漏斗形眼孔,增强了可用性和声学性能。

Inspired by the structural elegance of sea anemones and the acoustic properties of sound-focusing shells, the 25 m² aluminum pavilion was developed through an iterative form-finding process in Grasshopper using Kangaroo physics simulations. A soap-bubble simulation optimized the surface area between boundary splines, ensuring an efficient structural form that can evenly distribute loads. The final design features three access points and a funnel-shaped oculus, enhancing usability and acoustic performance.

结构概念和材料策略

STRUCTURAL CONCEPT & MATERIAL STRATEGY

亭子由双层铝壳组成,每条 1mm 厚的条带起着特定的结构作用:

o 外层充当连续的承重膜,处理轴向力,同时还用作数字艺术的光滑投影表面。

o 内层采用更稀疏的有机图案设计,可抵抗弯曲和剪切力,加强整体结构。

o 在内层引入了一系列桥接元件,以减轻平行于薄条可能产生的弯曲变形

The pavilion consists of a dual-layer aluminum shell, where each 1mm-thick strip plays a specific structural role:

  • The outer layer acts as a continuous load-bearing membrane, handling axial forces while also serving as a smooth projection surface for digital art.
  • The inner layer, designed with a more sparse, organic pattern,  resists bending and shear forces, reinforcing the overall structure.
  • A series of bridging elements were introduced in the inner layer to mitigate possible bending deformations parallel to the thinned strips

外层的分割遵循主应力路径,使用网格流算法和 Grasshopper 附加组件 Ivy 实现。同时,使用 Ivy(Grasshopper 附加组件)和桔皮分割算法的组合对内层进行了优化,以创建同心结构图案.

The outer layer’s segmentation follows principal stress paths, achieved using mesh-flow algorithms and the Grasshopper add-on Ivy. Meanwhile, the inner layer was optimized using a combination of Ivy (the Grasshopper add-on) and an orange-peel segmentation algorithm to create concentric structural patterns.

制造与组装

FABRICATION & ASSEMBLY

展馆专为快速、手动组装而设计,分为 12 个独立的部分,每个部分分别制造和预组装。铝带经过激光切割,确保创新的卡扣式联锁系统具有严格的公差,从而实现免工具组装并最大限度地降低制造复杂性。该过程遵循三个关键步骤:

1. 外层组装 – 铝带铆接在一起形成连续的外壳。
2. 内层集成 – 连接器折叠,连接内层。
3. 桥接元件添加 – 引入了额外的加固以增加刚度。

Designed for rapid, manual assembly, the pavilion was divided into 12 independent sectors, each fabricated and pre-assembled separately. The aluminum strips were laser-cut, ensuring tight tolerances for the innovative snap-fit interlocking system, which allowed tool-free assembly and minimized fabrication complexity. The process followed three key steps:

  1. Outer Layer Assembly – Aluminum strips were riveted together to form the continuous shell.
  2. Inner Layer Integration – Connectors were folded, and the inner layer was attached.
  3. Bridging Elements Addition – Additional reinforcement was introduced to increase stiffness.

结构性能和数字集成

STRUCTURAL PERFORMANCE & DIGITAL INTEGRATION

使用Karamba3D的有限元分析(FEA)证明了双层壳体相对于单层结构的显著优势。在静载荷下,单层壳体表现出 12 厘米的挠度,而双层系统将挠度减少到仅 0.3 厘米,证明了其卓越的刚度和结构完整性。未来的研究将侧重于提高连接刚度、优化层间间距和实施遗传算法,以进一步优化基于结构性能的分割。

A finite element analysis (FEA) using Karamba3D demonstrated the significant advantages of the dual-layer shell over a single-layer structure. Under dead loads, a single-layer shell exhibited 12 cm of deflection, whereas the dual-layer system reduced deflections to just 0.3 cm, proving its superior stiffness and structural integrity. Future research will focus on enhancing connection stiffness, refining inter-layer spacing, and implementing genetic algorithms to further optimize segmentation based on structural performance.

超越结构:座位与数字整合

BEYOND STRUCTURE: SEATING & DIGITAL INTEGRATION

亭阁包括一个定制的座椅系统,与外壳相得益彰。该系统由带有 3D 打印节点的钢棒网络和机器人铣削的双曲率泡沫垫组成。这些符合人体工程学的座椅提供适应性强的舒适性,并展示了混合数字制造技术。该展馆还用作投影表面,加强了其作为互动数字艺术场所的作用。通过连接手工和数字制造技术,刺鸟馆重新定义了建筑表皮的可能性,提供了一种高效、可扩展且具有视觉冲击力的结构设计方法。

The pavilion includes a custom seating system that complements the shell. This system consists of steel rod networks with 3D-printed nodes and robotically milled double-curvature foam cushions. These ergonomic seats provide adaptable comfort and showcase hybrid digital fabrication techniques. The pavilion also functions as a projection surface, reinforcing its role as an interactive digital arts venue. By bridging manual and digital fabrication techniques, the Cnidaria Pavilion redefines the possibilities of architectural skins, offering an efficient, scalable, and visually striking approach to structural design.

有兴趣的读者可以从ACADIA论文中了解更多信息。

Interested readers can find out more from the ACADIA paper.