通过选择性浆料侵入和 Spherene 彻底改变 3D 混凝土打印
Revolutionizing 3D Concrete Printing with Selective Paste Intrusion and Spherene
在慕尼黑举行的 BAU 2025 上,Scawo3D 和 Skeno 着手展示 3D 混凝土打印的突破性进展:选择性浆料侵入 (SPI)。这种方法由 Scawo3D 首创,引入了一种新型喷墨打印头,能够在松散骨料床内精确沉积水泥浆。与用于 Rhino/Grasshopper 的 Spherene 等计算设计工具配合使用,SPI 正在重新定义混凝土建筑的可能性——允许以前无法实现的复杂几何形状和优化结构性能。
At BAU 2025 in Munich, Scawo3D and Skeno set out to showcase a groundbreaking advancement in 3D concrete printing: Selective Paste Intrusion (SPI). This method, pioneered by Scawo3D, introduces a novel inkjet printhead capable of precisely depositing cement paste within a bed of loose aggregate. Paired with computational design tools like Spherene for Rhino/Grasshopper, SPI is redefining what’s possible in concrete architecture—allowing for intricate geometries and optimized structural performance that was previously unattainable.

突破建筑制造的界限
PUSHING THE BOUNDARIES OF ARCHITECTURAL FABRICATION
BAU 2025 的展位设计为演示和研究对象,测试 SPI 的实际应用。每个组件都是 3D 打印的,加强了将增材制造用于建筑元素的承诺。该展位不仅仅是一个展示,还探索了如何将 SPI 应用于承重结构,为建筑提供新的可能性,同时最大限度地减少材料浪费。
Spherene 通过 Rhino 和 Grasshopper 集成到展位设计中,在优化结构和热性能方面发挥了关键作用。由此产生的组件既实用又具有视觉冲击力,展示了美学表达和工程效率之间的精致平衡。
The exhibition booth at BAU 2025 was designed to be both a demonstration and a research object, testing the real-world applications of SPI. Every component was 3D printed, reinforcing the commitment to fully leveraging additive manufacturing for architectural elements. More than a display, the booth explored how SPI can be applied to load-bearing structures, offering new possibilities for construction with minimal material waste.Spherene, integrated into the booth’s design via Rhino and Grasshopper, played a key role in optimizing structural and thermal performance. The resulting components were functional and visually striking, showcasing a refined balance between aesthetic expression and engineering efficiency.

计算设计与现代装配
COMPUTATIONAL DESIGN & MODERN ASSEMBLY
展台设计在一个紧凑的 25 平方米角落空间内,其结构旨在平衡功能和影响:
o 3 米高的后墙采用集成的 Spherene 结构,分为六个模块,更易于作。每个模块的重量在 150 到 320 公斤之间。
o 一面 3 米高的中央墙,带有 Scawo3D 标志,分为两部分以提高运输效率。
o 一个模块化柜台,分为两个部分,作为讨论和信息中心。
o 与 Skeno 和 Timo Harboe 合作开发的 3D 打印楼梯,展示了 SPI 生产复杂承重结构的能力。
为了补充实体展品,两个数字显示器为参观者提供了对 SPI 功能的更多见解,而不会让过多的物理元素压倒空间。
Designed within a compact 25m² corner space, the booth was structured to balance functionality and impact:
- 3m-high back walls featuring integrated Spherene structures, divided into six modules for easier handling. Each module weighed between 150 and 320 kg.
- A 3m-high central wall bearing the Scawo3D logo, segmented into two parts for transport efficiency.
- A modular counter divided into two sections, serving as a discussion and information hub.
- A 3D-printed staircase, developed in collaboration with Skeno and Timo Harboe, demonstrating SPI’s ability to produce complex, load-bearing structures.
To complement the physical exhibit, two digital displays provided visitors with additional insights into SPI’s capabilities without overwhelming the space with excessive physical elements.

SPI 工艺:3D 混凝土打印的新方法
The SPI Process: A New Approach to 3D Concrete Printing
SPI 方法在大型颗粒床(4 x 2.5 x 1.5 米)上运行,使用逐层技术来实现精度和复杂性:
1. 用碎石英砂或轻质膨胀粘土等材料制备松散骨料床。
2. Scawo3D 的打印头将水泥浆高精度注入干骨料中,形成结构部件。
3. 应用下一个聚集层,并以 3 毫米的增量重复该过程,直到构建整个结构。
对于 BAU 2025 展位,此过程仅用两个部分就完成了:
o 后墙:使用轻质膨胀粘土在一次 6 小时的会话中打印,总计 1.9 吨。
o 其余组件:使用石英砂骨料在 4 小时内打印。
这种快速制造方法不仅缩短了生产时间,而且最大限度地减少了材料浪费,使其成为传统混凝土结构的有效替代方案。
The SPI method operates on a large-scale particle bed (4 x 2.5 x 1.5 meters), using a layer-by-layer technique to achieve precision and complexity:
- A loose aggregate bed is prepared with materials such as crushed quartz sand or lightweight expanded clay.
- Scawo3D’s printhead injects cement paste into the dry aggregate with high precision, forming the structural components.
- The next aggregate layer is applied, and the process repeats in 3mm increments until the entire structure is built.
For the BAU 2025 booth, this process was completed in just two sessions:
- Back walls: Printed in a single 6-hour session using lightweight expanded clay, totaling 1.9 tons.
- Remaining components: Printed in 4 hours using quartz sand aggregate.
This rapid fabrication method not only shortens production time but also minimizes material waste, making it an efficient alternative to traditional concrete construction.

使用RHINO、GRASSHOPPER和SPHERENE进行计算设计
COMPUTATIONAL DESIGN WITH RHINO, GRASSHOPPER, & SPHERENE
该展位的设计依靠计算工具来简化其复杂几何形状的开发。Rhino 和 Grasshopper 提供了优化展位布局的灵活性,而 Spherene 则实现了对密度、厚度和结构性能的精确控制。
为了加快设计迭代过程,该团队实施了参数化工作流程:
o 球面包络线 (env, dfenv) 允许快速探索不同的结构配置。
o 动态参数调整控制材料分布和性能。
o 可定制的边界属性确保组件之间的平滑过渡。
这种方法使团队能够快速迭代,在不影响可制造性的情况下优化形式和功能之间的平衡。
The booth’s design relied on computational tools to streamline the development of its intricate geometries. Rhino and Grasshopper provided the flexibility to refine the booth’s layout, while Spherene enabled precise control over density, thickness, and structural performance.
To accelerate the design iteration process, the team implemented a parametric workflow:
- Spherene envelopes (env, dfenv) allowed for quick exploration of different structural configurations.
- Dynamic parameter adjustments controlled material distribution and performance.
- Customizable boundary attributes ensured smooth transitions between components.
This approach enabled the team to iterate rapidly, optimizing the balance between form and function without compromising manufacturability.




通过计算精度克服挑战 OVERCOMING CHALLENGES WITH COMPUTATIONAL PRECISION
解决方案:灵活的 Grasshopper 工作流程
Solution: A Flexible Grasshopper Workflow
最大的挑战之一是有效地迭代多个设计变体,确保每个版本都保持结构完整性,同时保持 SPI 生产的可行性。
通过利用 Grasshopper 的参数化功能,该团队能够实时调整设计参数。这允许:
o 快速探索不同的 Spherene 结构。
o 快速测试密度和材料分布设置。
o 在保持美学目标的同时适应制造限制。
这种计算方法简化了决策过程,并确保最终的展位同时满足视觉和结构要求。
One of the biggest challenges was efficiently iterating through multiple design variations, ensuring each version maintained structural integrity while remaining feasible for SPI production.
By utilizing Grasshopper’s parametric capabilities, the team was able to adjust design parameters in real-time. This allowed for:
- Quick exploration of different Spherene structures.
- Rapid testing of density and material distribution settings.
- Adaptability to fabrication constraints while preserving aesthetic goals.
This computational approach streamlined decision-making and ensured that the final booth met both visual and structural requirements.
最终成果:混凝土建筑的未来一瞥
FINAL OUTCOME: A GLIMPSE INTO THE FUTURE OF CONCRETE ARCHITECTURE
BAU 2025 展位成功展示了 SPI 如何与计算设计工具相结合,重新定义架构的可能性。Scawo3D、Skeno 和 Spherene 之间的合作能够在建筑规模上制造高度详细的自由形状结构,代表了数字制造的重大飞跃。随着行业朝着更可持续、更高效的施工方法发展,像这样的项目凸显了增材制造在改变我们建造方式方面的潜力。SPI 不仅仅是传统混凝土的替代品,它是对未来的愿景,复杂的几何形状和优化的结构将成为标准做法,而不是例外。
The BAU 2025 booth successfully demonstrated how SPI, coupled with computational design tools, can redefine architectural possibilities. With the ability to fabricate highly detailed, freeform structures at an architectural scale, this collaboration between Scawo3D, Skeno, and Spherene represents a significant leap forward in digital fabrication.As the industry moves towards more sustainable and efficient construction methods, projects like this highlight the potential of additive manufacturing to transform how we build. SPI is not just an alternative to traditional concrete—it’s a vision of the future, where complex geometries and optimized structures become standard practice rather than exceptions.
